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Abstract

This paper studies the interaction between monetary policy, financial markets, and the real economy. We
develop a Bayesian framework to estimate proxy structural vector autoregressions (SVARs) in which monetary
policy shocks are identified by exploiting the information contained in high frequency data. For the Great
Moderation period, we find that monetary policy shocks are key drivers of fluctuations in industrial output
and corporate credit spreads, explaining about 20 percent of the volatility of these variables. Central to this
result is a systematic component of monetary policy characterized by a direct and economically significant
reaction to changes in credit spreads. We show that the failure to account for this endogenous reaction
induces an attenuation bias in the response of all variables to monetary shocks.
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Juan Rubio-Ramı́rez, Jón Steinsson, Mark Watson, Egon Zakraǰsek, Tao Zha, and seminar and conference participants at the Federal
Reserve Board, the 2015 SED Annual Meetings, the EFSF workshop at the 2015 NBER Summer Institute, Cornell University,
Colgate University, and Emory University. All errors and omissions are our own responsibility. The views expressed in this paper
are solely the responsibility of the authors and should not be interpreted as reflecting the views of the Board of Governors of the
Federal Reserve System or of anyone else associated with the Federal Reserve System.
∗Federal Reserve Board of Governors. Email: dario.caldara@frb.gov
†Federal Reserve Board of Governors. Email: edward.p.herbst@frb.gov

mailto:Dario_Caldara
mailto:Edward_Herbst


1 Introduction

Starting with Sims (1980), a long literature has assessed the effects of monetary policy using structural vector

autoregressions (SVARs). Many papers have found that identified monetary tightenings reduce output.1

However, the issue is far from settled, with Uhlig (2005) notably finding that monetary policy has no real

effects, and more recent studies finding that the effects of monetary policy on the real economy have become

muted over time, in particular during the Great Moderation period.2 Furthermore, the consensus in the

literature is that shocks to monetary policy do not significantly contribute to business cycle fluctuations.

This paper provides new evidence on the importance of monetary policy for business cycle fluctuations for

the 1994–2007 period. We identify monetary policy shocks by estimating a Bayesian proxy SVAR (BP-SVAR)

that exploits information contained in monetary surprises computed using high-frequency data. We find that

positive monetary policy shocks induce a sustained decline in real economic activity and are accompanied

by a significant tightening in financial conditions. Moreover, at the posterior mean of our preferred VAR

specification, monetary shocks explain about 20 percent of the volatility of industrial output and corporate

credit spreads at business cycle frequencies, a contribution about four times larger than standard estimates.

Arriving at this conclusion requires explicitly acknowledging the two-way interaction between measures

of corporate credit spreads and monetary policy. On the one hand, several recent papers have concentrated

on assessing the transmission of monetary policy through financial markets, both empirically (Gertler and

Karadi, 2015; Gaĺı and Gambetti, 2015) and theoretically.3 On the other hand, Rigobon and Sack (2003)

have provided evidence that monetary policy endogenously reacts to changes in asset prices. Hence, the

endogeneity of monetary policy to financial variables and the reaction of asset prices to monetary policy

present a clear identification problem. We document that both channels are quantitatively important. In

our BP-SVAR, monetary policy shocks are transmitted through tightening in financial conditions and, at the

same time, monetary policy displays a large and significant response to changes in corporate credit spreads:

All else being equal, a 20 basis point increase in spreads leads to a 10 basis point drop in the federal funds rate

at our posterior mean estimate. An implication of the systematic response of monetary policy to financial

conditions is that the effects of shocks which originate in or transmit through financial markets—for example,

Gilchrist and Zakrajsek (2012)—are substantially smaller in comparison to standard estimates.

Our analysis shows that the failure to account for the endogenous response of monetary policy to corporate

credit spreads induces an attenuation bias in the estimated response of real activity to monetary policy shocks.

In misspecified models that omit the endogenous response of monetary policy to credit spreads, a monetary

1See Bernanke and Blinder (1992); Christiano, Eichenbaum, and Evans (1996); Leeper, Sims, and Zha (1996); Leeper and Zha
(2003); Romer and Romer (2004); and, more recently, Arias, Caldara, and Rubio-Ramirez (2015).

2See Hanson (2004); Boivin and Giannoni (2006); Boivin, Kiley, and Mishkin (2010); and Castelnuovo and Surico (2010).
3Dynamic stochastic general equilibrium models with financial frictions have been pioneered by Bernanke, Gertler, and Gilchrist

(1999). Gertler and Karadi (2011) provide a recent application to study the transmission of monetary policy.
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shock is a mix of truly exogenous changes in policy and negative changes in credit spreads (as the elasticity

of the fed funds rate to spreads is negative). The bias toward zero happens because a drop in credit spreads

generates a persistent increase in real activity.

To quantify the effect of this kind of misspecification, we estimate two variants of the model. In particular,

we find that monetary shocks identified in a BP-SVAR that omits credit spreads induce no change in industrial

production. We also show that monetary shocks identified by imposing that the fed funds rate does not react

contemporaneously to changes in credit spreads (a standard Cholesky identification) induce a decline in

industrial production that is 40 percent smaller than in our preferred BP-SVAR specification. This result

explains why our findings differ from the conventional wisdom that monetary policy does not contribute much

to business cycle fluctuations.

Our paper also provides a methodological contribution to the recent literature on proxy SVARs. We

provide an encompassing framework that jointly models the interaction between the SVAR and the proxy.

In particular, we write the likelihood of a SVAR model augmented with a measurement equation that relates

the proxy to the unobserved structural shock and estimate the model using Bayesian techniques. A first

advantage over the standard framework is that inference is valid regardless of the information content of the

proxy for the structural shock, requiring no modification for so-called weak instruments, as long as a proper

prior is specified. A second advantage is that, as we coherently incorporate all sources of uncertainty in the

estimation, the proxy becomes informative about both the reduced-form and structural parameters of the

model. A third advantage is that, through prior distributions, we can adjust the informativeness of the proxy

for the estimation of the parameters of the SVAR model.4 That is, researchers that are convinced of the

quality of their proxiess can enforce their priors and induce the estimation to take a lot of signal from them.

In particular, following Mertens and Ravn (2013), we impose priors on the “reliability” of the proxy, defined

as the correlation between the structural shocks identified in the SVAR and the proxies used to identify

them.5

Our analysis exploits the Bayesian framework to gain new insights on proxy SVARs by estimating models

for different priors on the degree of reliability. In our applications, we find that shrinking the prior toward a

relevant proxy—that is, imposing a high reliability of the proxy—can substantially reduce noise and sharpen

inference but only if the VAR contains observables that reflect the key transmission mechanisms of mone-

tary policy. By contrast, we show that VAR misspecification in the form of omitted variables introduces

endogeneity that can severely bias the dynamic response of the endogenous variables to the shock of interest,

regardless of the reliability of the proxy. Moreover, we find that detecting model misspecification is extremely

4This feature is one major differentiation of our analysis from other Bayesian approaches: for example, Bahaj (2014) and
Drautzberg (2015).

5The reliability index is defined as (signal)/(signal+noise) and hence is similar to the signal-to-noise ratio in the measurement
equation.
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hard, as models with different implications can have an identical degree of reliability.

Intuitively, proxy SVARs identify structural shocks by instrumenting the endogenous reduced-form VAR

residuals with exogenous proxies for the unobserved structural shocks. A high degree of reliability mostly

signals that the proxy can be a good instrument in these IV-type regressions, and that we can obtain reliable

estimates of the contemporaneous response of the endogenous variables to the structural shock. However, the

reliability indicator is silent about the possibility of missing key variables in the system that could alter the

dynamic responses of all variables to the shock. This is why, even with a well-constructed and reliable proxy,

if the VAR is misspecified, the BP-SVAR will provide misleading inference. Hence the argument of Romer

and Romer (2010), that observing a carefully constructed proxy closely related to the policy shock yields an

unbiased estimate even in the presence of omitted variables, does not apply to this methodology.

Our methodological results have important implications for the existing literature on proxy SVARs. The

result that the specification of the VAR model is consequential for inference, irrespective of the quality of the

proxy, is important because most of the literature focuses on the relevance and exogeneity of the proxy rather

than the specification of the VAR model. Consequently, the importance of model misspecification and the

impossibility of correcting it through the priors motivates the estimation of large systems, and the Bayesian

framework is particularly well-suited to this task.

The starting point of our analysis is Gertler and Karadi (2015), who also employ a monetary proxy

SVAR that includes financial variables. Indeed, we document similar responses of real activity and corporate

credit spreads to monetary policy shocks. However, relative to Gertler and Karadi (2015), we show that the

addition of corporate credit spreads to the proxy SVAR leads to a dramatic difference in the response of all

model variables to the monetary shock and, in terms of forecast error variance, makes such monetary shocks

important drivers of the cycle. In addition, we characterize the endogenous component of monetary policy

and show that although it reacts contemporaneously to corporate credit spreads and stock returns, it does

not react contemporaneously to prices, several measures of real activity, or mortgage spreads. Finally, we

provide a Bayesian framework for inference and derive implications for the literature on proxy SVARs that

extend beyond our application to monetary policy.

In our empirical analysis, we use the proxies for monetary policy shocks constructed from high-frequency

data around Federal Open Market Committee (FOMC) statements. Price changes in federal funds rate

futures during a narrow window around FOMC statements provide a measure of the unexpected component

of monetary policy, which we aggregate to a monthly frequency. Our paper follows the literature, pioneered

by Kuttner (2001), that uses event studies to examine monetary policy shocks. Other influential studies

include Bernanke and Kuttner (2005); Gürkaynak, Sack, and Swanson (2005); Campbell, Evans, Fisher, and

Justiniano (2012); and Gilchrist, López-Salido, and Zakraǰsek (2015). The bulk of these studies consider
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simple univariate regressions for assessing the effects on monetary policy on daily changes in asset prices. In

contrast, we are more concerned with studying the interaction between monetary policy, and macroeconomic

and financial conditions. Therefore, we use a VAR as our principal framework for analysis.6

The paper is structured as follows. Section 2 describes the BP-SVAR model and the estimation procedure.

Section 3 describes the data. Section 4 shows the main empirical findings based on small proxy SVARs.

Section 5 documents how identification and inference depend on the informativeness of the proxy. Section 6

extends the analysis to larger models. Section 7 explores robustness to alternative measures of corporate

credit spreads. Section 8 concludes.

2 Econometric Methodology

In this section, we first describe a standard SVAR model and illustrate the identification problem from

a Bayesian perspective. We then present the BP-SVAR, the prior distributions, and the sampler used to

draw from the posterior distribution. Finally, we discuss some key properties of the model and the model’s

relationship with the literature.

2.1 The SVAR Model

Consider the following VAR, written in structural form:

y′tA0 =

p∑
`=1

y′t−`A` + c+ e′t, for 1 ≤ t ≤ T, (1)

where yt is an n× 1 vector of endogenous variables, et is an n× 1 vector of structural shocks, A` is an n× n

matrix of structural parameters for 0 ≤ ` ≤ p with A0 invertible, c is a 1 × n vector of parameters, p is the

lag length, and T is the sample size. The vector et, conditional on past information and the initial conditions

y0, ..., y1−p, is Gaussian with a mean of zero and covariance matrix In (the n×n identity matrix). The model

described in Equation (1) can be written as

y′tA0 = x′tA+ + e′t, for 1 ≤ t ≤ T, (2)

where xt = [y′t−1, . . . , y
′
t−p, 1]′ and A+ = [A′1, . . . , A

′
p, c]

′. The reduced-form representation of this model is

given by

y′t = x′tΦ + u′t, ut ∼ N (0,Σ). (3)

6In an early work, Faust, Swanson, and Wright (2004) use the responses of federal funds rate futures contracts to FOMC
announcements to identify a VAR but omit measures of financial conditions.
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The reduced-form parameters and the structural parameters are linked through

Σ = (A0A
′
0)−1 and Φ = A+A

−1
0 . (4)

When the object of interest is, say, assessing the effects of shocks et on observables or decomposing the

structural sources of fluctuations, the econometrician requires knowledge of (potentially a subset of) the

parameters (A0, A+). As is well known, without additional restrictions, it is not possible to obtain unique

estimates of the structural parameters given the reduced-form parameters. This is because it is impossible to

discriminate between the many possible combinations of structural shocks that yield the same reduced-form

residuals, ut; that is, the likelihood is flat with respect to these combinations. To see this, let Σtr be the

lower-triangular Cholesky factorization of Σ and let Ω ∈ O(n), where O(n) is the space of all orthogonal

matrices of size n× n, so that

A0 = Σ−1′

tr Ω. (5)

It can be verified that any two orthogonal matrices Ω and Ω̃ ∈ O(n) yield two sets of structural coefficients

A0 and Ã0 that give rise to identical likelihoods. The majority of the literature, beginning with Sims (1980),

has used theoretical restrictions to achieve identification—that is, to inform choices of Ω. The Bayesian

framework incorporates the information from theoretical restrictions in the form of a distribution over Ω,

denoted by p(Ω). To see how the data and the restrictions imposed on Ω interact, we can decompose the

joint distribution of data and parameters as follows:7

p(Y1:T ,Φ,Σ,Ω) = p(Y1:T |Φ,Σ)p(Φ,Σ)p(Ω). (6)

The first density on the right-hand side of Equation (6) is the likelihood function for Y1:T , which does not

depend on Ω. A direct implication is that the distribution for Ω is not updated in light of the data:

p(Ω|Y1:T ) = p(Ω). (7)

Because the data do not contain information on p(Ω), most debates in the SVAR literature are about the

“correct” choice of distribution for any given application. For instance, in many cases, p(Ω) is dogmatic in

the sense that it implies probability one to a single Ω. A common dogmatic identification scheme is to set

7We use the notation Y1:T for [y1 . . . yT ]′. In this and what follows, we suppress any dependence on the initial conditions Y−p:0
for convenience.
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Ω = In, which corresponds to the widely used Cholesky factorization of Σ.8

2.2 The Bayesian Proxy SVAR

In this paper, we follow a different strategy and inform the choice of Ω by incorporating additional data, the

proxies, that contain information about a subset of the structural shocks in the SVAR. Proxies are typically

constructed using event studies, microdata, or high-frequency data, and hence contain information about

the structure of the model coming from sources of variation that are external to the SVAR. Key to our

methodology is to use a probability distribution that does not rule out any Ω a priori and incorporate the

proxy in the SVAR so that prior beliefs p(Ω) are updated by the proxy in a probabilistic way.9

In what follows, we take the proxy, mt, to be an observation from a scalar-valued time series of length T .

We link mt to a particular structural shock of interest that, without loss of generality, we assume is the first

shock e1,t. The relationship between mt and e1,t is given by

mt = βe1,t + σννt, νt ∼ N (0, 1) and νt ⊥ et. (8)

The formulation in Equation (8) has two implications. The first is that the squared correlation between mt

and e1,t,

ρ ≡ CORR (mt, e1,t)
2

=
β2

β2 + σ2
ν

, (9)

measures the “relevance” of the external information for the structural shock of interest. Mertens and Ravn

(2013) call ρ the reliability indicator for the proxy. Equation (8) makes clear that the reliability indicator is

directly related to the signal-to-noise ratio β/σ. The larger this value, the more information the proxy brings

to bear on the identification of the SVAR. The second implication of Equation (8) is that mt is orthogonal

to other structural shocks in the VAR, e/1,t:

E
[
mte/1,t

]
= 0. (10)

Equation (10) conveys the exogeneity of the proxy. This condition ensures that our proxy is only informative

about a single shock or, equivalently, a single column of Ω. These two conditions are very similar to those

8More generally, researchers allow for this distribution to depend on the reduced-form parameters, writing this prior as p(Ω|Φ,Σ).
Many common prior distributions—ones based on sign restrictions, for example—exhibit this dependence. As in our framework,
p(Ω) does not depend on (Φ,Σ), we suppress this dependence for notational convenience. Del Negro and Schorfheide (2011) survey
how many common identification schemes map into assumption on Ω.

9The framework is a Bayesian implementation of the proxy SVAR approach of Stock and Watson (2012) and Mertens and
Ravn (2013). The proxy structural VAR approach has been motivated as an instrumental variable approach for the reduced-form
residuals, but Mertens and Ravn (2013) show that, under some restrictions, it is equivalent to a model in which the proxy is simply
a linear function of the structural shock of interest subject to measurement error.
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required of an instrument in an instrumental variables regression. The setting, however, is different: In

practice, what matters is the relationship between mt and ut, the unobserved structural shock from the

SVAR.

To examine in detail how the proxy interacts with the rest of the structural VAR, we augment Equation (1)

with Equation (8). Letting ỹt = [y′t,mt]
′
, ẽt = [e′t, νt]

′
, and similarly defining x̃t, we can rewrite Equation (1)

as a system of equations for ỹt:

ỹ′tÃ0 = x̃′tÃ+ + ẽ′t. (11)

The structural matrices Ã0 and Ã+ are functions of the original structural VAR matrices, (A0, A+), and the

parameters governing the proxy equation, (β, σν), with

Ã0 =

 A0 −βσA·1,0

O1×n
1
σ

 , and Ã+ =

 A+ −βσA·1,+

O1×n 0

 . (12)

As can be seen from Equation (12), the proxy SVAR is an augmented SVAR that links the proxy to the

structural shock of interest through the structural coefficients associated with it.

2.3 Understanding Identification in BP-SVARs

To understand how identification works in BP-SVARs, it is instructive to write the joint likelihood function

for Y1:T and M1:T :

p(Y1:T ,M1:T |Φ,Σ,Ω, β, σν) = p(Y1:T |Φ,Σ)p(M1:T |Y1:T ,Φ,Σ,Ω, β, σν). (13)

The first term on the right-hand side of Equation (13) is the likelihood of the VAR data Y1:T . This

likelihood contains information only about the reduced-form parameters Φ and Σ. The second term, which

is unique to BP-SVARs, is the conditional likelihood of the proxy M1:T given the VAR data Y1:T , which has

the following closed-form solution:10

M1:T |Y1:T ,Φ,Σ, β, σν ∼ N
(
µM |Y , VM |Y

)
,

with

µM |Y =
[
βΩ′·1Σ−1

tr (Y1:T −X1:TΦ)
′]′

and VM |Y = σ2
νIT , (14)

where µM |Y and VM |Y are the mean and variance, respectively, associated with the normally distributed

likelihood. Because the conditional likelihood of the proxy M1:T given Y1:T is a function of all parameters of

10See the Appendix for the derivations.
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the proxy SVAR all prior distributions, including p(Ω), are updated in light of the information contained in

the proxy. As we see from the expression for µM |Y , for given values of Φ, Σ, β, and σν , the econometrician

updates the beliefs about the identification of the structural shock e1 by giving relatively more weight to Ωs,

which results in linear combinations of “standardized residuals” (Σ−1
tr ut) that look like a scaled version of the

proxy. Similarly, for given values of Ω, β, and σν , the econometrician updates the beliefs about the reduced-

form coefficients Ψ and Σ by giving relatively more weight to the reduced-form residuals that span the proxy

mt. This coherent modeling of all sources of uncertainty through the joint likelihood, and, hence, the ability

to exploit the information content of the proxy to estimate both reduced-form and structural parameters of

the BP-SVAR, consitutes a first advantage of our framework over traditional proxy SVAR models.

The expressions for µM |Y and VM |Y reported in Equation (14), as well as the expressions for the structural

matrices described by Equation (12), also reveal that the signal-to-noise ratio β/σ is crucial for identifying the

coefficients of the SVAR. When β/σ is large, mt provides a lot of information about e1,t and, consequently,

about the structural parameters A·1,0 (or, equivalently, about Ω′·1Σ−1
tr (Y1:T −X1:TΦ)

′
). However, when

β = 0, mt is simply noise and provides no information about A·1,0. Finally, when β/σ is close to zero, but

not zero, we have weak identification.

A second advantage of the BP-SVAR over standard proxy SVARs estimated using a frequentist approach is

that in a Bayesian setting, weak identification does not pose a problem per se—as long as the prior distribution

is proper, inference is possible.11 Although a comprehensive analysis of this issue is outside the scope of this

paper, it is important to highlight that in the case of weak identification, the prior plays an important role

in inference. But in our framework, comparing prior to posterior distributions, a standard diagnostic check

to detect weak identification is trivial. The reason is that, as already shown by Equation (13), when it comes

to identification, the relevant prior distributions are those implied by the model before observing M1:T but

after observing Y1:T , as the VAR data are not informative about Ω. Drawing from this prior is easy and is

achieved by combining draws from Φ,Σ|Y1:T with draws from the prior from Ω.

A third advantage over the standard framework is that, through prior distributions, we can adjust the

informativeness of the proxy for the estimation of the parameters of the BP-SVAR model. In practice,

researchers construct proxies to be relevant—that is, to contain a lot of information about the structural

shock of interest. This effort is consistent with a prior view of a high degree of reliability ρ, or, equivalently,

of a high signal-to-noise ratio β/σ. We operationalize this kind of prior, along with more diffuse ones, by

constructing prior distributions where ν can only explain a fraction of the variation in M1:T .12

This kind of prior shrinkage is not a panacea, though. In sections 4 and 5, we show that shrinking the prior

11See, for instance, Poirier (1998). Of course, lack of identification or weak identification, which manifests itself as flat or nearly
flat likelihood profiles, could pose practical issues when sampling the posterior.

12There are many ways of doing this. One could use a change of variables and parameterize ρ directly, for instance.
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toward a relevant proxy—that is, imposing a high reliability of the proxy—can substantially reduce noise

and sharpen inference but only if the VAR contains observables that reflect the key transmission mechanisms

for the shock of interest. By contrast, we show that VAR misspecification in the form of omitted variables

introduces endogeneity that can severely bias inference, regardless of the reliability of the proxy. Moreover,

we find that detecting model misspecification is extremely hard, as models with different implications can

have an identical degree of reliability.

The analytical expression for µM |Y can help shed light on these features of proxy SVARs. The reliability

of the proxy is determined by its contemporaneous relationship with the reduced-form residuals of the endoge-

nous variables included in the model. Hence, a proxy can be highly reliable because it contains information

about the impact responses of some variables. But in most applications—including the application to mon-

etary policy presented in this paper—researchers are interested in the dynamic responses, as the effects of

many macroeconomic shocks occur only after a substantial delay. The dynamic propagation of the (correctly

estimated) impact responses uniquely depends on the specification of the VAR model and is mostly unrelated

to the reliablity of the proxy. In fact, although in principle misspecified dynamics could be reflected in the

estimation of ut and hence be reflected in the reliability of the proxy, in practice we find that the impact on

misspecification on the reliability indicator is extremely modest. Although it is true that variable omission

can affect inference in a large class of models (Sims, 1992), and not just in proxy VARs, we think it is worth

underscoring this feature of proxy SVARs, as the literature has placed a large emphasis on the proxy and not

on the specification of the VAR model.

2.4 Prior Distributions and Posterior Sampler

Prior Distributions. We assume independent prior distributions for (Φ,Σ), Ω, and (β, σν), so we can

factorize the joint distribution as

p(Φ,Σ,Ω, β, σν) = p(Φ,Σ)p(Ω)p(β, σν).

The advantage of working with independent priors is that we have more flexibility to select prior distributions

for the different blocks of the parameter space, which we discuss next.

The prior on the reduced-form parameters p(Φ,Σ) is parameterized so that the prior is conjugate to the

likelihood p(Y1:T |Φ,Σ). The implication is that the posterior conditional on the VAR data Y1:T is known

in closed-form. For densely parameterized models, statistical shrinkage is necessary, so we use a Minnesota

Prior, which has a multivariate normal-inverse Wishart form. Specifically, we use the dummy observation

implementation of the Minnesota Prior discussed in Del Negro and Schorfheide (2011).

Key to our approach is to choose a prior for Ω that is easy to sample from and that ensures a good

10



coverage of O(n), the set of all orthonormal matrices. To this end, we use the uniform prior discussed in

Rubio-Ramı́rez, Waggoner, and Zha (2010). This prior can be sampled from by drawing an n × n matrix

where each element is an independent random normal draw. The QR factorization of this matrix, with R

having positive diagonal elements, gives Ω.13

The prior for β and σν can be chosen to be conjugate to the likelihood function. In what follows, we

maintain a general prior p(β, σν) and do not exploit conjugacy to give us the flexibiltiy to shrink the prior

p(β, σν) to impose a higher signal-to-noise ratio. We choose the following distributions:

p(β) ∼ N (µβ , σβ), (15)

p(σν) ∼ U [0, σ̄νstd(M1:T )]. (16)

The standard deviation of the measurement error σν is uniformly distributed between zero and an upper bound

that is a function of the standard deviation of the proxy.14 The parameter σ̄ν , as previously mentioned, allows

us to scale a priori the amount of variance of the proxy that can be explained by measurement error. A low

upper bound on σν forces the estimation to generate a small measurement error and hence to take a lot of signal

from the proxy. Using the priors for β and σν , we can deduce a prior for ρ. In the above framework, lowering

σ̄ν shrinks the prior on ρ toward 1. Alternatively, we could impose a prior on the reliability indicator ρ and

measurement error variance σν with Beta and Inverse Gamma distributions, respectively. With appropriately

chosen hyperparameters, we would achieve informative priors in the same spirit as the ones described above.

Posterior Sampler. Our prior formulation does not admit a closed-form solution, so we rely on Markov

chain Monte Carlo (MCMC) methods to sample the posterior. MCMC generates a sequence of random draws

of parameters that, under suitable regularity conditions, converges in distribution to the posterior distribution

of the model of interest.15 We partition the set of model parameters into three blocks that correspond to the

reduced-form parameters (Φ,Σ), the orthonormal matrix Ω, and the coefficients of the measurement equation

(β, σν). We use a block Metropolis-Hastings algorithm, which can be described in general terms as follows.

Under our prior, the posterior for all of the model parameters, under only the VAR data Y1:T , can be sampled

from directly because of the conjugacy of the prior distributions on (Φ,Σ) and the fact that (Ω, β, σν) do not

enter the likelihood of Yt. This object, combined with the conditional likelihood p(M1:T |Y1:T , . . .), yields a

kernel of the full posterior. Thus, we reformulate the problem as one in which this posterior is the “prior” and

13As emphasized by Baumeister and Hamilton (2015), a uniform prior over O(n) might impose unintended restrictions on other
objects of the SVAR. We follow their suggestion and compare prior and posterior distributions to show how the information in the
proxy updates the prior distributions for our objects of interests.

14It should be noted that σν = 0 is associated with a singular distribution for the data and proxy, which is an undesirable feature
of this prior. The data are extremely informative about σν , though, so this is not a practical concern.

15Del Negro and Schorfheide (2011) provide background on MCMC methods generally used in VAR models.
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is updated in light of proxy. We use this prior, subject to minor adjustment, for the proposal distributions in

the MCMC algorithm. Details can be found in the Appendix. This forumation is also conceptually appealing,

as the difference between the prior and posterior, for all parameters, is driven solely by the proxy.

3 Data: Proxies and Corporate Credit Spreads

3.1 Measuring Monetary Policy Shocks

To construct our baseline proxy for monetary policy shocks, we apply the high-frequency event study method-

ology developed in Kuttner (2001). In this approach, the unexpected change in the target federal funds rate

is measured by calculating the change in the (appropriately scaled) current-month federal funds rate futures

around a tight window surrounding the release of FOMC statements. Kuttner (2001) uses a daily window,

but subsequent studies have shown that even the use of a daily window might not be enough to purge this

policy measure from expected (and hence endogenous) movements. Hence, we follow Gürkaynak, Sack, and

Swanson (2005) and Gilchrist, López-Salido, and Zakraǰsek (2015) and use intraday data. In particular, we

use a 30-minute window (10 minutes before and 20 minutes after).

Table 1: Summary Statistics for Proxy after FOMC Statements

Basis Points # of Observations

Median 0.0 Decrease 50
Mean 0.4 No Change 22
Std. Dev. 5.7 Positive 36

Maximum 16.3 (February 4, 1994)
Minimum -22.6 (December 20, 1994)

Note: Table shows summary statistics for surprises in the target federal funds rate computed from current
month fed funds futures contracts, along the lines of Kuttner (2001).

Our sample begins in January 1994, the year in which the FOMC started issuing statements immediately

after each meeting, and ends in June 2007, three months before the FOMC started to cut interest rates in

response to “the tightening of credit conditions [that] has the potential to intensify the housing correction and

to restrain economic growth more generally.”16 This conservative cutoff ensures that we do not capture the

effects of unconventional monetary policy or the presence of the zero lower bound in our baseline estimates.

16We could compute unexpected changes to the target rate using federal funds rate futures from January 1990. But prior to
1994, the FOMC did not issue a statement and changes to the target rate had to be inferred by the size and type of open market
operations. Coibion and Gorodnichenko (2012) find an increase in the ability of financial markets and professional forecasters to
predict subsequent interest rate changes after 1994, suggesting that improved transparency could have altered the transmission of
policy surprises. Prior to 1994, the FOMC often changed its target for the federal funds rate just hours after the Bureau of Labor
Statistics’s employment report release. But the use of intraday data avoids confounding the truly unexpected change with the
reaction of the fed funds rate to the employment report. In any event, our qualitative results are robust to the inclusion in the
sample of the early 1990s.
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From January 1994 to June 2007, there were 108 scheduled FOMC meetings. We use the changes in the

federal funds rate futures, constructed as previously discussed, after the release of the FOMC statement for

each of these meetings as our baseline shock series.

Table 1 displays summary statistics for the proxy, which are plotted in Figure A-1 in Appendix B. On

average, there is very little surprise change in the target federal funds rate after the release of an FOMC

statement. Indeed, “no change” is the most likely outcome, with 22 of the 108 observations being zero.

Overall, the changes are small. The largest decrease—an unexpected easing of policy occurring on December

20, 1994—is about 23 basis points, and the largest increase—an unexpected tightening of policy occurring on

February 4, 1994—is about 16 basis points. As the right column of Table 1 shows, the shocks are negatively

skewed. Almost half of the changes are negative.

We use only the changes associated with prescheduled FOMC meetings, though there are four FOMC

statement releases after unscheduled FOMC meetings and phone calls.17 In general, the literature has consid-

ered shocks associated with both scheduled and unscheduled FOMC meetings.18 One exception is Nakamura

and Steinsson (2013), who note that unscheduled meetings may occur in reaction to other shocks and thus

be endogenous. In Appendix B, we provide statistical evidence that the inclusion of intermeeting surprises,

though there are only four such observations in our sample, introduces predictability into the shock series,

biasing the estimates of the effects of monetary policy. We also show that our preferred measures do not

seem to contain this predictability.

Our goal is to study the effects of monetary shocks—proxied by the series of changes previously discussed—

on key macroeconomic aggregates, with particular emphasis on the dynamic effects of the shocks. Unfortu-

nately, we do not have corresponding high-frequency data for output, prices, and other objects of interest.

Therefore, we convert the series of surprises to a monthly frequency. To do so, we follow Romer and Romer

(2004) and assign each shock to the month in which the corresponding FOMC meeting occurred. If there are

no meetings in a month, we record the shock as zero for that month.19

Finally, in section 5, we use the change in two-year Treasury yields in a 30-minute window around the

release of the FOMC statement as an alternative proxy for the monetary shocks. Gürkaynak, Sack, and

Swanson (2005) and Campbell, Evans, Fisher, and Justiniano (2012) have convincingly shown that the

effects of monetary policy might be better characterized by two factors that capture changes in the current

fed funds rate target and changes to the future path of policy. Gilchrist, López-Salido, and Zakraǰsek (2015)

argue that surprise changes in two-year Treasury yields adequately summarize the first-order effects of the

17As is customary in this kind of analysis, we do not ever include the announcement on September 17, 2001, when trading on
major stock exchanges resumed after it was temporarily suspended following the 9/11 terrorist attacks.

18See, for example, Bernanke and Kuttner (2005); Gürkaynak, Sack, and Swanson (2005); Campbell, Evans, Fisher, and Justiniano
(2012); Gilchrist, López-Salido, and Zakraǰsek (2015); and Gertler and Karadi (2015).

19Because our baseline measure incorporates only scheduled FOMC meetings, there are never two shocks occurring in the same
month.
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Figure 1: Corporate Credit Spreads
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Note: Sample period: monthly data from January 1986 to June 2014. The red dotted line depicts the estimate
of the excess bond premium, an indicator of the tightness of financial conditions (see Gilchrist and Zakrajsek,
2012). The black solid line depicts the Baa yield relative to the 10-year Treasury yield. The shaded vertical
bars denote the NBER-dated recessions.

two factors.20

3.2 Measuring Financial Conditions

We rely on the information contained in corporate credit spreads to measure conditions in financial markets

and the transmission of monetary policy through credit markets. In particular, we use the excess bond

premium (EBP), a popular indicator of tightness in credit markets constructed by Gilchrist and Zakrajsek

(2012). The EBP estimates the extra compensation demanded by bond investors for bearing exposure to

U.S. nonfinancial corporate credit risk beyond the compensation for expected losses. The U.S. corporate

cash market is served by major financial institutions and fluctuations in the EBP; thus, it captures shifts

in both the risk attitudes of these institutions and their willingness to bear credit risk and to intermediate

20Gilchrist, López-Salido, and Zakraǰsek (2015) also provide evidence that the proxies described above reflect unanticipated
changes in monetary policy rather than policymakers private information about the state of the economy.
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credit more generally in global financial markets.21 For robustness, we also use the Moody’s seasoned BAA

corporate bond yield relative to the yield on 10-year Treasury constant maturity. We construct the monthly

series by taking the average of daily observations. The advantage of the EBP over the BAA spread is that it

is a more direct measure of tightness in credit markets.

Figure 1 plots the EBP and the BAA spread from 1986 to 2014. The correlation between the two measures

is 0.7 for both the full sample and the 1994–2007 period used in the baseline estimation. During the Great

Moderation period, the standard deviation for both indicators is around 50 basis points, compared with 60

to 75 basis points for the full sample. Hence, corporate credit markets also experienced a large amount of

volatility during the Great Moderation period.

4 Monetary Policy, Real Activity, and Credit Spreads

To show how monetary policy, real activity, and credit spreads interact in a proxy SVAR, in this section

we present results from two simple proxy SVAR models. We estimate a bivariate proxy SVAR model that

consists of an indicator of monetary policy stance and a measure of real activity. We then add a measure of

credit spreads to the bivariate model. Finally, we provide some intuition behind the key results of the section.

The bivariate VAR specification consists of the effective nominal federal funds rate and the first difference

of the log of manufacturing industrial production; the trivariate specification includes the EBP.22 The resulting

specifications, which include a constant, are estimated over the July 1993 to June 2007 period using six lags

of the endogenous variables. For the priors, we use the Minnesota prior as in Del Negro and Schorfheide

(2011) with hyperparameters λ = [0.5, 1, 1, 1, 1]. For β, we set µβ = 0 and σβ = 0.5. The parameter that

scales the measurement error is σ̄ν = 1, essentially allowing all of the proxy to be measurement error. The

Appendix contains details on the hyperparameters associated with the posterior sampler.

4.1 Main Results

The top panel of Figure 2 displays the impulse responses of the fed funds rate and the level of industrial

production to a one standard deviation monetary shock identified using the bivariate proxy SVAR. The near-

term effect of a positive monetary policy shock causes the fed funds rate to increase about 20 basis points,

a number within conventional estimates. Thereafter, the fed funds rate slowly falls, returning to zero after

approximately four years. There is considerable uncertainty about the effects of this shock on real activity. At

21This interpretation is also supported by the empirical work of Adrian, Moench, and Shin (2010b); Adrian, Moench, and Shin
(2010a); and Adrian and Shin (2010), who show that risk premiums in asset markets are very sensitive to movements in capital
and balance sheet conditions of financial intermediaries. Theoretical foundations for such “intermediary” asset-pricing theories are
developed in the influential work of He and Krishnamurthy (2013) and Brunnermeier and Sannikov (2014).

22We do not include prices in these models because, as we show in section 6, their inclusion does not change the identification of
monetary policy shocks and their effects on real activity.

15



Figure 2: Impulse Responses to a Monetary Policy Shock
(2-Equation vs 3-Equation Models)
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Note: The solid line in each panel depicts the median impulse response of the specified variable to a 1 standard
deviation monetary policy shock identified in the bivariate (top row) and in the trivariate (bottom row) proxy
SVAR. The response of industrial production has been accumulated. Shaded bands denote the 90 percent
pointwise credible sets.

the posterior mean estimate, the level of industrial production falls about 0.2 percent, although the posterior

estimates do not rule out a positive response of real activity to the monetary tightening.

The bottom panel of Figure 2 displays the impulse responses of the federal funds rate, the level of industrial

production, and the EBP to a one standard deviation monetary policy shock identified in the trivariate proxy

SVAR. The impact response of the fed funds rate is 18 basis points, about the same as in the bivariate model.

The impact response of industrial production is close to zero and also similar to the bivariate model. By

contrast, the two models imply strikingly different dynamic effects of monetary policy shocks on these two

variables. The fed funds rate falls quickly after the shock and turns negative—monetary policy becomes more

accommodative, relative to its initial level—after about two and a half years. The effect of the shock on real

activity is large. About two and a half years after the shock, the level of industrial production has fallen

about 0.75 percent.

The difference in responses between models is clearly due to the inclusion of corporate credit spreads.

In response to the monetary tightening, there is a sustained increase in the credit spread, which begins at
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Figure 3: Contribution to the Forecast Error Variance of Monetary Policy Shocks
(Two Equation vs Three Equation Models)
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Note: The solid line in each panel depicts the median estimate of the portion of the forecast error variance of
a specified variable attributable to a one standard deviation monetary policy shock identified in the bivariate
(top panel) and in the trivariate (bottom panel) proxy SVAR. The forecast error variance decomposition of
industrial production is based on the level of the variable. Shaded bands denote the 90 percent pointwise
credible sets.

about 10 basis points over its baseline level and remains above zero for over two years. As discussed in the

next subsection, the tightening in financial conditions and the reduction in real activity explain the fall in

the fed funds rate, as monetary policy endogenously reacts to the state of the business and financial cycles.

Hence, corporate credit spreads are both an important conduit of changes in monetary policy to the real

economy and important to quantifying the endogenous response of monetary policy to a deterioration in real

and financial conditions.

The previously discussed results are suggestive of large differences between models about the importance

of monetary shocks for business cycle fluctuations. Using the VAR structure, we can decompose the forecast

error of the VAR along different horizons, attributing portions of the error variance to monetary shocks.

The top panel of Figure 3 displays these quantities for the monetary shock identified in the bivariate model,

and the bottom panel displays these quantities for the monetary shock identified in the trivariate model.

Concentrating on the horizons associated with business cycle frequencies—that is, 12-36 months—we see

that in the bivariate model, the monetary policy shock explains a negligible fraction of short-run movements
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Figure 4: Systematic Component of Monetary Policy
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Note: The two plots correspond to density estimates of the SVAR elasticities η∆IP and ηEBPP . The
blue dashed lines show estimates of p(η|Y1:T ) for the trivariate proxy SVAR, the blue solid lines show es-
timates of p(η|Y1:T ,M1:T ) for the trivariate proxy SVAR, and the red dash-dotted line shows estimates of
p(η∆IP |Y1:T ,M1:T ).

in industrial production, in line with the conventional wisdom that monetary policy does not contribute to

business cycle fluctuations. The decomposition is dramatically different for the trivariate model. Monetary

policy accounts for up to 40 percent of the fluctuations of industrial production and of the EBP.

As we show in section 6, in larger models the contribution of monetary policy to movements in industrial

production drops from 40 percent to about 20 percent. Nonetheless, the pattern documented in this section

holds: The dynamic effects of monetary shocks on the real economy are substantially larger and more precisely

estimated with the inclusion of a measure of corporate credit spreads in the VAR.

4.2 Discussion

To further understand the connections between monetary policy, real activity, and credit conditions, let us

consider the following parameterization of the relationship between the reduced-form residuals and structural

shocks:

u1,t = ηu2,t + S1e1,t, (17)

u2,t = ξu1,t + S2e2,t, (18)

where u1,t and e1,t are the reduced-form and structural federal funds rate innovations, respectively, and u2,t

and e2,t contain the reduced-form residuals and structural shocks associated with the remaining variables

in the VAR, respectively. The intuition of how the proxy SVAR identifies the monetary shock e1,t is that,

under assumptions (9) and (10), mt is a valid instrument for u1,t to estimate ξ in Equation (18). Given the
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estimate for ξ, u2,t − ξu1,t is a valid instrument to estimate η in Equation (17).

As shown in Equation (17), given some reduced-form residuals, the identification of e1,t hinges on the

identification of η, the contemporaneous elasticities of the federal funds rate to changes in real activity (η∆IP )

and credit spreads (ηEBP ). This interpretation of identification in SVARs is consistent with Leeper, Sims,

and Zha (1996); Leeper and Zha (2003); and Sims and Zha (2006), who emphasize that the identification of

policy shocks is equivalent to the identification of a policy equation—that is, of the endogenous component

of policy.

Figure 4 plots the densities for these elasticities considering only the VAR observables p(η|Y1:T )—the prior

distributions discussed in section 2—and the posterior densities p(η|Y1:T ,M1:T ) having observed the proxy

for both the bivariate and trivariate models.23 The prior distributions, the blue dashed lines, are centered

at zero and have a very wide coverage so that the model does not rule out any plausible value for these

elasticities before observing the proxy. The posterior distributions in both models are clearly updated in

light of the information contained in the proxy. The posterior distribution of η∆IP in the bivariate model

(the red dotted line) and in the trivariate model (the blue solid line) are very similar, centered around zero

and with very little variation. Hence, the information in the proxy mt suggests that the fed funds rate

does not respond contemporaneously to changes in industrial production.24 This result also corroborates the

fact that the BP-SVAR consistently estimates the contemporaneous coefficients that relate the proxy to the

variables included in the model, even in models with different dynamic structures. The posterior distribution

for ηEBP is clearly different from zero, with a median of negative 0.48 and a 90 percent credible set that

ranges from negative 1.19 to negative 0.05. A one standard deviation increase in uEBP—approximately 20

basis points—all else being equal, elicits an immediate monetary policy accommodation of 10 basis points.

This significant coefficient on the EBP suggests that, through the lense of the trivariate model, the bivari-

ate model identifies a monetary shock that is contaminated by the contemporaneous endogenous response

of monetary policy to credit spreads. Of course, a second reason that the identified monetary policy shock

changes across models is that the addition of the EBP changes the dynamics of the model. For instance, the

fed funds rate (or industrial production) could react to lagged values of the EBP. In this case, the identified

monetary shocks would be different in a model that includes EBP, even if ηEBP = 0.

To understand the relative importance of these two potential sources of model misspecification, we explore

an alternative identification strategy based on a Cholesky factorization of Σ, in which the fed funds rate does

not contemporaneously react to industrial production and the EBP. The top panel of Figure 5 compares im-

23The prior distributions are identical in both models.
24In Section 6 we show that this finding holds when using alternative measures of real activity, for example, changes in employment

and consumption.
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Figure 5: Macroeconomic Implications of Monetary Policy and Financial Shocks
(Model Comparison)
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Note: Each panel depicts the impulse responses of the specified variable to a one standard deviation monetary
policy shock (top row) and financial shock (bottom row) under three identification schemes: bivariate proxy
SVAR (black dotted line), trivariate proxy SVAR (blue solid line), and trivariate Cholesky factorization (red
dashed line). Impulse responses are evaluated at the OLS estimates of the reduced-form coefficients. The
response of industrial production has been accumulated. See text for additional details.

pulse responses to a monetary policy shock computed at the OLS estimates of the reduced-form coefficients.25

The impulse responses from the bivariate proxy SVAR (the black dotted lines) and the trivariate proxy SVAR

(the blue solid lines) are similar to the median responses plotted in Figure 2. The impulse responses identified

with the Cholesky decomposition fall in between the responses from the two proxy SVARs. The response of

industrial production to a monetary shock peaks at about negative 0.5, twice as large than in the bivariate

proxy SVAR but 40 percent smaller than the response estimated in the trivariate proxy SVAR. Similarly, the

impact response of the EBP is 0.02, about five times smaller compared with the trivariate proxy SVAR.

The bottom panel of Figure 5 displays the impulse responses of the fed funds rate, the level of industrial

production, and the EBP to a one standard deviation financial shock identified in the trivariate proxy SVAR

25The impulse responses to the monetary policy shock would look nearly identical had we plotted median responses from the
full Bayesian estimation of the models. We choose to plot results for a simple OLS estimation where the proxy SVAR is identified
using the algorithm in Mertens and Ravn (2013) because—in light of the recent work by Arias, Rubio-Ramirez, and Waggoner
(2014)—the posterior sampler would need to be modified to properly impose the zero restrictions used to identify the financial
shock. Moreover, we also wanted to highlight that our results hold for the standard implementation of the proxy SVAR and are
not specific to the Bayesian framework.
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and using the Cholesky identification. In the latter approach, the EBP is ordered last in the system, and hence

a financial shock cannot contemporaneously affect the fed funds rate and industrial production. Because we

do not have a proxy to identify exogenous movements in the EBP, in the proxy SVAR we identify the financial

shock by imposing a similar recursive ordering. In particular, we assume that the EBP is ordered last within

the nonpolicy block u2,t, which amounts to imposing lower triangular structure on S2 from Equation (18) .

Note that the proxy SVAR allows the financial shock to have a contemporaneous effect on the fed funds rate,

and this effect is pinned down by the identification of the monetary shock, and in particular by the elasticity

of the fed funds rate to the EBP. These results suggest that, through the lense of the trivariate model,

the bivariate model identifies a monetary shock that is contaminated by the contemporaneous endogenous

response of monetary policy to credit spreads. A complementary explanation is that the addition of the EBP

changes the dynamics of the model. For instance, the fed funds rate (but also industrial production) could

react to lagged values of the EBP, and hence the identified monetary shocks would be different in a trivariate

model even if ηEBP , which is negative in our model, were zero. Consequently, the financial shock cannot

directly affect industrial production on impact but it can affect industrial production indirectly through the

fed funds rate.26

Following a financial shock identified in the proxy SVAR, the EBP goes up approximately 15 basis points

on impact and remains above zero for about two years. The fed funds rate drops about 10 basis points

on impact and remains accommodative thereafter. The immediate accommodation in the monetary stance

partially offsets the effect of the financial shock on real activity, and industrial production falls about 0.5

percent, a smaller drop compared with the one induced by monetary policy shocks.

Following a financial shock identified with the Cholesky factorization, the EBP goes up slightly more than

in the proxy SVAR. By assumption, the fed funds rate cannot respond contemporaneously to the financial

shocks. Industrial production falls more than in the proxy SVAR. The lack of immediate reaction from

the monetary authority induces a more persistent decline in real activity and a more sustained rise in the

EBP, which in turn leads the stance of monetary policy to be more accommodative for longer. Hence, the

identification of the monetary shock in the proxy SVAR has important implications for the propagation of

other shocks in the system.

Finally, Figure 5 makes clear that, through the lense of the proxy SVAR, the monetary shock identified

with a Cholesky factorization is contaminated by the endogenous response of monetary policy to the EBP.

Because (i) ηEBP < 0 and (ii) increases in the EBP are associated with future low economic activity, it

follows that the failure to control for the endogenous response of monetary policy to credit market conditions

26The idea is to compare the identification of a financial shock using a “full” Cholesky to a block Cholesky, where the only
difference is in the identification of the monetary shock via the proxy.
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Table 2: Reliability Indicators

A. Baseline (fed funds rate)

σ̄ν = 1 σ̄ν = 0.5

Bivariate 0.11 0.33
[0.04, 0.20] [0.24, 0.43]

Trivariate 0.11 0.33
[0.04, 0.20] [0.24, 0.43]

B. Alternative (two-year Treasury yield)

σ̄ν = 1 σ̄ν = 0.25

Four Equation 0.01 0.18
[0.00, 0.05] [0.09, 0.29]

Note: Panel A reports the estimates of the reliability indicator associated with the bivariate and trivariate
proxy SVARs for a loose (σ̄ν = 1) and tight (σ̄ν = 0.5) prior on the standard deviation of the measurement
error. Similarly, panel B reports the estimates of the reliability indicator associated with the four equation proxy
SVAR model for a loose (σ̄ν = 1) and tight (σ̄ν = 0.25) prior on the standard deviation of the measurement
error. The proxy is the surprise changes in two-year Treasury yields calculated by Gilchrist, López-Salido, and
Zakraǰsek (2015). See the text for details.

induces an attenuation bias in the responses of the EBP and industrial production to a monetary shock.27

5 Reliability and Prior Specification

In the previous section, we documented how the inclusion of a variable in the proxy SVAR—namely, a measure

of credit spreads—has dramatic effects on inference. This result suggests that model misspecification in the

form of omitted variables, a serious concern when estimating standard SVARs, is also a serious concern

when working with proxy SVARs. But are there statistics that we can use to detect this type of model

misspecification?

The reliability indicator presented in Equation (9) is a metric of how relevant a proxy is for the identifica-

tion of a shock of interest. This indicator might be a helpful statistic because VARs that miss key variables

might be associated with low reliability indicators. The first column of Table 2 presents the posterior esti-

mates of the reliability indicator ρ described for the bivariate and trivariate proxy SVARs. The median is

0.11 for both models, and the 5th and 95th percentiles are 0.04 and 0.20, respectively. Despite having very

different implications, the two models have equal reliability indicators.28

27It should be noted that this contamination is not related to the fact that the proxy contains measurement error. Evidence from
Monte Carlo experiments (not shown) confirms that even when the proxy contains very little measurement error, the estimates of
the elasticities are still biased if variables in the data-generating process (for example, credit spreads) are omitted from the proxy
SVAR. The Cholesky factorization will similarly provide biased estimates.

28The reliability indicator for the trivariate model is larger than in the bivariate model at the third decimal digit.
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Figure 6: Impulse Responses to a Monetary Policy Shock
(Tight Prior on σ̄ν)
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Note: The solid line in each panel depicts the median impulse response of the specified variable to a one
standard deviation monetary policy shock identified in the bivariate (top row) and in the trivariate (bottom
row) proxy SVAR estimated with a tight prior on the measurement error (σ̄ν = 0.5). The response of industrial
production has been accumulated. Shaded bands denote the 90 percent pointwise credible sets.

One interpretation might be that both models are misspecified, and hence the reliability indicator is equal

and small in both models. One exercise that our Bayesian framework allows us to perform is to tighten the

prior on the measurement error and force the proxy SVAR to take more signal from the proxy than in the

baseline estimation. For instance, we impose that σ̄ν = 0.5—that is, the measurement error can explain, at

most, half of the variation in the proxy. As we report in the second column of Table 2, a tight prior on σ̄ν

increases the reliability of both models to 0.33, which implies a correlation between e1,t and mt of nearly

0.6.29

Figure 6 plots the associated impulse responses to a one standard deviation monetary policy shock for the

bivariate and trivariate proxy SVARs. The impulse responses are nearly indistinguishable from those reported

29When we set a tight bound on the standard deviation of the measurement error, most of the probability mass in the posterior
distribution for σν is concentrated at σ̄ν . By choosing an extreme prior for σν , we convey in stark terms the lack of relationship
between the reliability indicator and the dynamics of the BP-SVAR, which a more flexible prior setting might obscure. Moreover,
one could argue that we could achieve the same analysis by simply fixing this measurement error and estimating the model via
maximum likelihood estimation. Note, however, that because of the nondogmatic prior on β, the implied prior on the reliability ρ
is still nondogmatic, as clearly indicated by the distributions reported in Table 2.
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in Figure 2. This result suggests that both the bivariate and trivariate proxy SVARs are well identified for the

set of variables included in the model and, consequently, changing the prior distributions of some parameters

does not change the posterior.

We now turn to an application that shows the potential of the Bayesian framework when applied to models

that are not well-identified. Specifically, motivated by the work of Gilchrist, López-Salido, and Zakraǰsek

(2015) described in Section 3, we use an alternative proxy for the unobserved monetary policy shocks, the

surprise changes in the two-year Treasury yield. Accordingly, we expand the model and add the two-year

Treasury yield to the three variables we have in the baseline specification.

Figure 7 reports the impulse responses to a one standard deviation monetary policy shock for the baseline

estimation of the model where we set σ̄ν = 1. None of the responses is statistically different from zero, and

the error bands are extremely wide. Interestingly, the median impact response of the EBP is 0.1, in line with

the response found in our baseline model. But the posterior distribution has a very fat right tail with the 5th

percentile equal to negative 0.1. Overall, the evidence from this proxy SVAR suggests that the so-called path

factor—here encompassed in the change in the two-year Treasury yield—is a much weaker driver of asset

prices than the conventional monetary policy (level) shocks studied in Section 4.1. This finding is contrary to

much of the literature, which estimates the response of asset prices to monetary policy shocks (for example,

Gürkaynak, Sack, and Swanson, 2005.) The reason for this discrepancy is that the proxy SVAR attributes

nearly all of the movements in the proxy to measurement error. Indeed, the width and irregularity of the

posterior densities, especially of the response of the EBP, suggest that the model might not be well identified.

The reliability indicator, reported in the last row of Table 2, is only 0.01.

Figure 8 reports the impulse responses obtained by re-estimating the model with a tight prior on the

standard deviation of the measurement error, which we assume can explain at most one-fourth of the standard

deviation of the proxy. Forcing the proxy SVAR to take a lot of signal from the proxy has notable effects on

results. The response of the two-year Treasury yield is negative across the response horizon. This response

might seem odd, given that we are studying a monetary policy tightening but is fully consistent with the

response of the fed funds rate. Because a monetary policy shock has large and persistent detrimental effects

on both financial conditions and real activity, an initial tightening in policy is followed by a loosening that

peaks exactly two years after the shock. The cumulative response of the fed funds rate over a two-year

rolling window is nearly identical to the response of the two-year yield. The response of EBP to the identified

monetary policy shock is more precisely estimated with a positive and persistent effect—much closer to effects

estimated using an event-study methodology.

Figure 9 plots the prior and posterior densities for the elasticities of the fed funds rate to industrial

production and the EBP elasticities. In the baseline estimation where we set σ̄ν = 1, the distribution of

24



Figure 7: Impulse Responses to a Monetary Policy Shock
(Loose Prior on σ̄ν)
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Note: The solid line in each panel depicts the median impulse response of the specified variable to a one
standard deviation monetary policy shock identified with a four equation proxy SVAR with a loose prior on
the measurement error (σ̄ν = 1). Shaded bands denote the 90 percent pointwise credible sets. The proxy is
the surprise changes in two-year Treasury yields calculated by Gilchrist, López-Salido, and Zakraǰsek (2015).
The response of industrial production has been accumulated. See text for details.

both η∆IP and ηEBP is clearly not updated and the two distributions clearly overlap. By contrast, posterior

distributions are clearly updated when we force the proxy SVAR to take a lot of signal from the proxy, and

the elasticities are similar to those shown in Figure 4.

All told, three messages emerge from this section. First, the reliability indicator does not seem to capture

model misspecification and cannot be used for cross-model comparison. Second, the Bayesian framework

allows us to explore inference for varying degrees of reliability. When the proxy SVAR is only weakly

identified, forcing a small measurement error can substantially reduce noise and sharpen inference. Third,

our framework allows us to recover sharp predictions on the effects of monetary policy shocks when the latter

are proxied by movements in yields at longer maturities.
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Figure 8: Impulse Responses to a Monetary Policy Shock
(Tight Prior on σ̄ν)
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Note: The solid line in each panel depicts the median impulse response of the specified variable to a one
standard deviation monetary policy shock identified with a four equation proxy SVAR with a tight prior on
the measurement error (σ̄ν = 0.25). Shaded bands denote the 90 percent pointwise credible sets. The proxy is
the surprise changes in two-year Treasury yields calculated by Gilchrist, López-Salido, and Zakraǰsek (2015).
The response of industrial production has been accumulated. See text for details.

Figure 9: Systematic Component of Monetary Policy
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Note: The two plots correspond to density estimates of the SVAR elasticities η∆IP and ηEBP . The blue
dashed lines show estimates of p(η|Y1:T ), the blue solid lines show estimates of p(η|Y1:T ,M1:T ) when σ̄ν = 1,
and the red dash-dotted lines show estimates of p(η|Y1:T ,M1:T ) when σ̄ν = 0.25.

26



6 Application to Larger Models

In section 4, we explored the macroeconomic implications of monetary shocks identified in small proxy SVARs

consisting of two and three variables. We also argued, providing additional evidence in section 5, that the

omission of credit spreads from the model has large effects on inference. In this section, we characterize

the effects of monetary policy using larger models taken from the literature. We want to study whether the

inclusion of more variables leads to further changes in results, and whether the omission of credit spreads

from larger models leads to the same change in inference as in the small model.

6.1 Gertler and Karadi (2015)

The first model we estimate is the proxy VAR employed in Gertler and Karadi (2015). The model consists of

seven variables. To the three variables used in our baseline model we add the following: the first difference

of the personal consumption expenditure (PCE) price level excluding food and energy, the 10-year Treasury

yield, the prime mortgage spread over 10-year Treasury yields, and the commercial paper spread.30 Our

proxy is the surprise component in the current-month fed funds rate future, but results are robust to the use

of the three-month-ahead monthly fed funds futures as in Gertler and Karadi (2015).

Figure 10 displays the impulse responses of the federal funds rate and the level of industrial production

to a one standard deviation monetary shock identified in the full model (left column) and in an identically

specified model that omits the EBP (right column). Figures A.2 and A.3 in Appendix C display the impulse

responses of all remaining variables. Two results emerge from this exercise. First, in the full model, the

decline in industrial production is smaller than in the trivariate proxy SVAR and bottoms at negative 0.5

after about three years. The decline in real activity and increase in the EBP lead monetary policy to relax

its stance after about two years. But the loosening of the stance is smaller than in the trivariate proxy SVAR

and is not statistically significant. Second, the omission of the EBP from the baseline model leads to the

same bias toward zero in the estimated response of industrial production that we documented in section 4.

Figure 11 displays the fraction of forecast error variance in industrial production attributed to the mone-

tary shock in the full model and in the model without the EBP. Figures A.4 and A.5 in Appendix C display

the forecast error variance decomposition of all remaining variables. Although the monetary shock identified

in the full model explains up to 20 percent of movements in industrial production, the same shock explains

less than 5 percent in the model without the EBP. Hence, the other financial variables in the system do not

mitigate the omitted variable bias induced by the removal of the EBP.

To understand why the inclusion of the EBP is crucial to the identification of monetary policy shocks

30Gertler and Karadi (2015) estimate many specifications that rotate government yields. We take one particular specification
that includes the 10-year Treasury yield, but results are robust to the use of yields on Treasury securities at different maturities.
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Figure 10: Impulse Responses to a Monetary Policy Shock
(Selected Variables from the Gertler and Karadi (2015) VAR Model)
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Note: The solid line in each panel depicts the median impulse response of the specified variable to a one
standard deviation monetary policy shock identified in the Gertler and Karadi (2015) VAR model (left column)
and in the same model without the EBP (right column). The response of industrial production has been
accumulated. Shaded bands denote the 90 percent pointwise credible sets.

Figure 11: Contribution to the Forecast Error Variance of Monetary Policy Shocks
(Selected Variables from the Gertler and Karadi (2015) VAR Model)
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Note: The solid line in each panel depicts the median estimate of the portion of the forecast error variance
of the level of industrial production attributable to a one standard deviation monetary policy shock identified
in the Gertler and Karadi (2015) VAR model (left column) and in the same model without the EBP (right
column). Shaded bands denote the 90 percent pointwise credible sets.
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Table 3: Elasticity of Federal Funds Rate to Macro and Financial Variables
(Gertler and Karadi (2015) VAR Model)

10Y ∆P ∆IP MTGS CPS EBP

Full Model -0.08 -0.04 0.00 -0.04 0.01 -0.10*

No EBP -0.11 -0.01 0.01 -0.10 0.02 –

Note: The table reports the median estimates of the elasticity of the federal funds rate to macroeconomic and financial
variables estimated in five proxy SVARs. *: 68 percent credible set does not include zero; **: 90 percent credible set does
not include zero. The elasticities are standardized by the OLS estimate of the standard deviation of the relevant reduced-
form residual; 10Y: 10-year Treasury yield; ∆P : personal consumption expenditure price deflator (first difference); ∆IP :
manufacturing industrial production (first difference); MTGS: mortgage spread; CPS: commercial paper spread; EBP: excess
bond premium.

in a model that also contains several financial variables, Table 3 reports the estimated contemporaneous

elasticities of the fed funds rate to changes in all other variables in the system for the two variants of the

Gertler and Karadi (2015) proxy SVAR model. To enhance comparability, the elasticities are standardized by

the standard deviation of the VAR reduced-form residual of the relevant variable. The posterior distribution

of all elasticities has substantial probability mass on both positive and negative values for all variables

but the EBP, whose distribution has substantial mass on negative values. Monetary policy does not react

contemporaneously to changes in spreads on mortgage and commercial paper, which explains why their

inclusion inthe VAR does not change the identification of monetary shocks.31 Moreover, and in contrast with

standard monetary policy rules routinely used in macroeconometric models, the information in the proxy

does not identify any contemporaneous and systematic response of monetary policy to changes in prices.

This result, together with the lack of response of prices to a monetary policy shock, motivates the exclusion

of prices from the VAR specifications studied in section 4.

6.2 Gilchrist and Zakrajsek (2012)

The second model we estimate is a monthly version of the SVAR employed in Gilchrist and Zakrajsek (2012)

and used in Caldara, Fuentes-Albero, Gilchrist, and Zakrajek (2016) to study the effects of financial and

uncertainty shocks. To the three variables we use in the baseline model we add the following: the first

difference of the log of private (nonfarm) payroll employment, the first difference of the log of (real) PCE,

(6) the first difference of the log of the PCE price deflator excluding food and energy, the 10-year Treasury

yield, and the first difference of the value-weighted total stock market (log) return.

Figure 12 displays the impulse responses of the federal funds rate and the level of industrial production to

a one standard deviation monetary shock identified in the full model (left column), in an identically specified

31Results are consistent with Bjørnland and Jacobsen (2013), who also finds that the response of the fed funds rate to a house
price shock is smaller than the response to a stock price shock.
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Figure 12: Impulse Responses to a Monetary Policy Shock
(Selected Variables from the Gilchrist-Zakrajšek VAR Model)

-0.5

-0.3

-0.1

 0.1

 0.3

 0.5

 

     

 0 12 24 36 48
-0.5

-0.3

-0.1

 0.1

 0.3

 0.5

Percentage Points

Federal Funds Rate

 

     

-0.5

-0.3

-0.1

 0.1

 0.3

 0.5

 

     

 0 12 24 36 48
-0.5

-0.3

-0.1

 0.1

 0.3

 0.5

Percentage Points

Federal Funds Rate

 

     

-0.5

-0.3

-0.1

 0.1

 0.3

 0.5

 

     

 0 12 24 36 48
-0.5

-0.3

-0.1

 0.1

 0.3

 0.5

Percentage Points

Federal Funds Rate

 

     

-2.0

-1.5

-1.0

-0.5

 0.0

 0.5

 1.0

 

 0 12 24 36 48
-2.0

-1.5

-1.0

-0.5

 0.0

 0.5

 1.0

Percent

Industrial Production

 

-2.0

-1.5

-1.0

-0.5

 0.0

 0.5

 1.0

 

 0 12 24 36 48
-2.0

-1.5

-1.0

-0.5

 0.0

 0.5

 1.0

Percent

Industrial Production

 

-2.0

-1.5

-1.0

-0.5

 0.0

 0.5

 1.0

 

 0 12 24 36 48
-2.0

-1.5

-1.0

-0.5

 0.0

 0.5

 1.0

Percent

Industrial Production

 

Note: The solid line in each panel depicts the median impulse response of the specified variable to a one
standard deviation monetary policy shock identified in the Gilchrist-Zakraǰsek VAR model (left column), in
the same model without the EBP (center column), and without the EBP and without the excess stock market
return. The response of industrial production has been accumulated. Shaded bands denote the 90 percent
pointwise credible sets.

Figure 13: Contribution to the Forecast Error Variance of Monetary Policy Shocks
(Selected Variables from the Gilchrist-Zakrajšek VAR Model)
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Note: The solid line in each panel depicts the median estimate of the portion of the forecast error variance of
the level of industrial production attributable to a one standard deviation monetary policy shock identified in
the Gilchrist-Zakraǰsek VAR model (left column), in the same model without the EBP (center column), and
without the EBP and without the excess stock market return. Shaded bands denote the 90 percent pointwise
credible sets.
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Table 4: Elasticity of the Federal Funds Rate to Macro and Financial Variables
(Gilchrist-Zakrajšek VAR Model)

10Y ∆P ∆IP ∆PCE ∆Emp EBP SMR

Full Model -0.01 -0.04 0.05 -0.02 -0.06 -0.06* 0.09*

No EBP -0.02 -0.01 0.07 -0.04 -0.05 – 0.12**

No EBP & SMR -0.01 0.00 0.04 -0.02 -0.04 – –

Note: The table reports the median estimates of the elasticity of the federal funds rate to macroeconomic and financial
variables estimated in three proxy SVARs. *: 68 percent credible set does not include zero; **: 90 percent credible set does
not include zero. The elasticities are standardized by the OLS estimate of the standard deviation of the relevant reduced-
form residual; 10Y: 10-year Treasury yield; ∆P : personal consumption expenditure price deflator (first difference); ∆IP :
manufacturing industrial production (first difference); ∆Emp: private nonfarm payroll employment (first difference); ∆PCE:
personal consumption expenditure (first difference); SMR: excess stock market return; EBP: excess bond premium. See the
text for details.

model that omits the EBP (center column), and in an identically specified model that omits the EBP and

the excess stock market return (right column). Figures A.6 and A.7 in Appendix C display impulse responses

of all remaining variables. The omission of the EBP from the baseline model leads to a smaller change of

the response of industrial production. Instead, the omission of both the EBP and the excess stock market

return results in an attenuation of the response of industrial production comparable with the one documented

in section 4. Hence, the excess stock market return is also a relevant variable to characterize the effects of

monetary policy.

Figure 13 displays the fraction of forecast error variance in industrial production attributed to the mone-

tary shock in the three models. Figures A.8 and A.9 in Appendix C display impulse responses of all remaining

variables. Although the monetary shock identified in the full model explains up to 20 percent of movements

in industrial production, the same shock explains only 8 percent in the model without the EBP and less than

5 percent in the model without the EBP and the excess stock market return.

Table 4 reports the contemporaneous elasticities of the fed funds rate to changes in all other variables

in the system for the three variants of the Gilchrist-Zakraǰsek SVAR model. To enhance comparability, the

elasticities are standardized by the standard deviation of the VAR reduced-form residual of the relevant

variable. The posterior distribution of all elasticities has substantial probability mass on both positive and

negative values for all variables but the EBP and the excess stock market return. A 12 basis point increase

in stock market returns leads to a 9 to 12 basis point monetary tightening. Note also that when the EBP

is omitted from the proxy SVAR, the elasticity of the fed funds rate to stock market returns becomes larger

and more significant. This result suggests that corporate bonds and stock prices might have both a common

factor and idiosyncratic sources of variation that characterize the response of monetary policy. Finally, the

estimated contemporaneous response of monetary policy to prices is not statistically significant.

31



Figure 14: Impulse Responses to a Monetary Policy Shock
(Alternative Measures of Credit Spread)
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(a) Trivariate Proxy SVAR with Baa Credit Spread
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(b) Trivariate Proxy SVAR with Gilchrist and Zakrajsek (2012) Credit Spread

Note: The solid line in each panel depicts the median impulse response of the specified variable to a one standard
deviation monetary policy shock identified in a trivariate proxy SVAR. The response of industrial production has
been accumulated. Shaded bands denote the 90 percent pointwise credible sets. See the text for additional details.

7 Alternative Measures of Credit Spreads

In the baseline specification, we followed Gertler and Karadi (2015) and used the EBP of Gilchrist and

Zakrajsek (2012) as a measure of credit spreads. But as discussed in section 3.2, the EBP is the component

of credit spreads related to the price of risk, and it excludes variation in spreads to changes in expected losses.

To test whether our results are due to this unique feature of the EBP, we re-estimate the baseline trivariate

model using two alternative measures of credit spreads.

Panel (a) of Figure 14 displays the impulse responses to a one standard deviation monetary shock when

we replace the EBP with the spread between BAA corporate bonds and the 10-year Treasury yield described

in section 3.2. Panel (b) of Figure 14 displays the impulse responses to a one standard deviation monetary

shock when we replace the EBP with the full Gilchrist and Zakrajsek (2012) credit spread index.

The impulse responses are broadly in line with those reported for the trivariate proxy SVAR specification.

A one standard deviation monetary policy shock elicits an initial 20 basis point increase in the fed funds
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Table 5: Elasticity of Federal Funds Rate
(Alternative Credit Spread Measures)

ηEBP ηBaa ηGZS

-0.1 -0.13 -0.11
[-0.24, -0.01] [-0.32, -0.03] [-0.29, -0.01]

Note: The table reports the median estimates of the elasticity of the federal funds rate to the EBP (ηEBP ), the Baa -
10-year credit spread (ηBaa), and Gilchrist and Zakrajsek (2012) credit spread (ηGZS). The elasticities are standardized by
the OLS estimate of the standard deviation of the relevant credit spread residual: uEBP = 0.2, uBaa = 0.1, and uGZS = 0.16.
90% credible sets are reported in brackets. See the text for details.

rate, followed by a rapid decline and switch to a more accommodative—relative to its initial level—stance

of policy. The response of both measures of credit spreads is hump-shaped and more persistent than the

response of the EBP. The decline in industrial production is more pronounced than in the baseline model,

peaking at negative 1 percent at about three years. The sharp and persistent decline in real activity might

be reflected in a decline in expected corporate cash flows and hence an increase in expected losses. This

component of corporate credit spreads is excluded from the EBP and might account for the different contour

in the responses of credit spreads to monetary shocks.

Finally, Table 5 reports the contemporaneous elasticities of the fed funds rate to changes in three measures

of corporate credit spreads. To enhance comparability, the elasticities are standardized by the standard

deviation of the VAR reduced-form residual of the relevant credit spread measure. A one standard deviation

increase in any measure of credit spreads—approximately 15 to 20 basis points—leads, all else being equal,

to an immediate accomodation in the policy stance of about 10 basis points. The posterior distributions for

the BAA and the Gilchrist and Zakrajsek (2012) spread have more mass on negative values, corroborating

the idea that indeed monetary policy might react to both tightening in financial conditions and information

about risk contained in credit spreads.

8 Conclusion

In this paper, we developed a framework for Bayesian inference in proxy SVARs and used it to examine a

monetary SVAR in which identification of monetary shocks is achieved using proxies constructed from high

frequency data. We find that, at least for the Great Moderation period, monetary policy both affects and

endogenously reacts to asset prices. Compared ith conventional estimates—which often ignore the endogenous

response of monetary policy to credit spreads—monetary policy shocks have a more prominent role in business

cycle fluctuations and explain about 20 percent of movements in industrial production and in corporate

spreads.
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There are several avenues for future research. First, the importance of monetary shocks documented in

this paper is larger than in typical New Keynesian dynamic stochastic general equilibrium (DSGE) models.

One possibility is that the models used in this paper might still be missing some variables that are key to

characterizing the endogeneity of monetary policy and might have important effects on inference. Another

possibility is to confront DSGE models with the evidence presented in this paper, which could be informa-

tive about the specification and estimation of nominal, real, and financial rigidities, as well as about the

specification of the monetary policy rule.

Second, financial variables could potentially interact with other macroeconomic policies. For example,

using Ramey’s (2011) measure of government spending shocks, Barro and Redlick (2011) find that an increase

in government spending reduces corporate spreads. This suggests that typical fiscal SVARs which omit

financial variables might be subject to the same bias documented in this paper.

Finally, our Bayesian framework, by jointly modeling and estimating the SVAR and its relationship with

the proxy, opens up the possibility to integrate proxy identification with standard identification strategies.

Potential applications include the refinement of the identification of coefficients or impulse responses for

which available proxies are uninformative—as, for instance, the systematic response of monetary policy to

prices documented in this paper—as well as the identification of structural shocks for which proxies are not

available.
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Appendices

A Bayesian Estimation

In this section, we first present the posterior sampler. We then describe the hyperparameters for the sampler

used in the estimation of the models presented in the paper. Finally, we derive the closed-form description

of the conditional likelihood of the proxy given the VAR data.

A.1 The Posterior Sampler

The posterior distribution of the proxy SVAR is

p(Φ,Σ,Ω, β, σν |Y1:T ,M1:T ) ∝ p(Y1:T ,M1:T |Φ,Σ,Ω, β, σν)p(Φ,Σ,Ω, β, σν), (19)

where the first term on the right hand side is the likelihood function already discussed in Equation (13)

and

Algorithm 1 (Block Metropolis-Hastings) At iteration i

1. Draw Σ,Φ|Y1:T ,M1:T ,Ω
i−1, βi−1, σi−1

ν .

For Σ We use a mixture proposal distribution (suppressing dependence on parameters for notational

convienence),

q(Σ|Σi) = γp(Σ|Y1:T ) + (1− γ)IW(Σ; Σi, d),

where p(Σ|Y1:T ) is the known posterior distribution of Σ under Y1:T and IW(·; Σi, d) is an Inverse

Wishart distribution with mean Σi and d degrees of freedom. For Φ we use the known distribution

p(Φ|Y1:T ,Σ) as a proposal in an independence MH step.

• Draw Σ∗ according to q(Σ|Σi).

• Draw Φ∗ according to p(Φ|Y1:T ,Σ
∗).

• With probability α, set Φi = Φ∗ and Σi = Σ∗, otherwise set Φi = Φi−1 and Σi = Σi−1. The

probability α is defined as

α = min

{
p(M1:T , Y1:T |Φ∗,Σ∗,Ωi−1, βi−1, σi−1

ν )p(Σ∗)

p(M1:T , Y1:T |Φi−1,Σi−1,Ωi−1, βi−1, σi−1
ν )p(Σi−1)

q(Σi−1|Σ∗)
q(Σ∗|Σi−1)

, 1

}
(20)

2. Draw Ω|Y1:T ,Mt,Ω
i−1, βi−1, σi−1

ν .

Use an Independence Metropolis-Hastings sampler using the Haar measure on the space of orthogonal

matrices.
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• Draw Ω∗ from the Haar measure by using Theorem 9 in Rubio-Ramı́rez, Waggoner, and Zha (2010).

• With probability α, set Ωi = Ω∗, otherwise Ωi = Ωi−1. The probability α is defined as

α = min

{
p(M1:T |Y1:T ,Φ

i,Σi,Ω∗, βi−1, σi−1
ν )

p(M1:T |Y1:T ,Φi,Σi,Ωi−1, βi−1, σi−1
ν )

, 1

}
(21)

3. Draw β, σν |Y1:T ,Mt,Ω
i−1, βi−1, σi−1

ν .

Use a random walk Metropolis-Hastings step for each proposal

A few words on the design of the sampler. In Step 1, when γ = 1, the proposal density form (Φ,Σ) is

p(Φ,Σ|Y1:T ) = p(Σ|Y1:T )p(Φ|Y1:T ,Σ), the posterior distribution of the reduced form coefficients conditional

on the data Y1:T . When using the Minnesota prior, this posterior distribution is known in closed-form, making

the algorithm computationally efficient. But to the extent that the proxy is informative about the reduced

from residuals ut, the posterior of the reduced form parameters p(Φ,Σ|Y1:T ,M1:T ) might be very different

the posterior p(Φ,Σ|Y1:T ), in which case using p(Φ,Σ|Y1:T ) as a proposal is not a good idea. To deal with

this situation we use a mixture proposal for Σ that adds a the random walk-like component IW (·; Σi, d).

Obviously, some care must be taken in setting both γ and d. A good rule of thumb is to start with

γ = 1. If the acceptance rate is too low, lower γ and fine-tune the size of the random walk step through

the hyperparameter d. Even though this algorithm worked well in the applications presented in this paper,

this sampler is not likely to be efficient when the posterior of p(Φ,Σ|Y1:T ,M1:T ) is very different from the

posterior under only the VAR data, p(Φ,Σ|Y1:T ). In this case, alternative samplers could be used, potentially

operating directly on the structural parameters (A0, A+). Candidates simulators include those in Bognanni

and Herbst (2014), who use Sequential Monte Carlo methods to elicit SVAR posteriors, and Waggoner, Wu,

and Zha (2014), who construct a striated Metropolis-Hastings algorithm. For the models considered here, a

sampler based on the one in Bognanni and Herbst (2014) produced the same posterior estimates.

A.2 Sampling Hyperparameters

Sampler in Section 4.1. For our baseline estimation, We set γ = 1, as the similarity of p(Φ,Σ|Y1:T ) and

p(Φ,Σ|Y1:T ,M1:T ) is quite high. When caping the measurement error with σ̄ν = 0.5 or σ̄ν = 0.25, we set

γ = 0.8 and d = 5, to ensure a better exploration of the parameter space. We estimating the larger models

in Section 6, we shrink the Minnesota prior with λ2 = 3. All the results reported in the paper are based on

50,000 draws from the posterior distribution of the structural parameters with a burn-in period of 10,000

draws.
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A.3 The conditional density p(M |Y,Φ,Σ,Ω, β, σν)

Let Σtr be the lower Cholesky of Σ. For an tth observation, we have

 yt − Φxt

mt

 =

 ΣtrΩ O

b σν

 εt

νt

 (A-1)

where b = [β, 0, . . . , 0] . (A-2)

The implies that the joint distribution of ut(= yt − Φxt) and mt is normally distributed, mean zero, with a

variance matrix given by:

V =

 Σ ΣtrΩb′

bΩ′Σ′tr bb′ + σ2
ν


This means that mt given ut is also normal.

Mt|Yt,Φ,Σ,Ω, β, σν ∼ N(µM |Y , VM |Y )

The conditional mean is given by

µM |Y = bΩ′Σ′trΣ
−1ut (A-3)

= bΩ′Σ−1
tr ut (A-4)

= βΩ′·1Σ−1
tr ut (A-5)

The second equality follows from ΣtrΣ
′
trΣ
−1 = I and the third equality follows from the defintion of b. The

conditional variance is given by,

VM |Y = bb′ + σ2
ν − bΩ′Σ′trΣ

−1ΣtrΩb′ (A-6)

= σ2
ν (A-7)
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B Endogeneity of Surprises from Intermeeting Announcements

Between 1994 and 2007:6, the FOMC has made 108 announcements associated with regularly-scheduled

FOMC meetings, and four announcements associated with intermeeting interest rate moves. Figure A-1 plots

the monthly series of unexpected policy changes. The black bars show the aggregated shock series associated

with regulary-scheduled meetings for our baseline sample 1994:1-2007:6, with the pre- and post-sample series

shown in grey bars. The four intermeeting moves, highlighted in red-dashed bars in Figure A-1, occurred on

April 18, 1994; October, 15, 1998; January 3, 2001; and April 18, 2001. The April 1994 interest rate increase

is the second-largest increase in our sample, and the three other meetings represent the three largest cuts.

While these four policy actions were unannounced and consequently largely unexpected, they were taken in

response to economic conditions, and particular attention was paid to developments in financial markets.

We report below four excerpts from the Minutes (first episode) and the Statements associated with these

episodes.

• April 18, 1994. Policy change: 25 basis points increase. Unexpected change: 15 basis points increase.

In financial markets, sharp declines in bond and stock prices suggested that speculative excesses had been

reduced, and ongoing portfolio realignments probably were shifting long-term financial assets to firmer

hands.

• October 15, 1998. Policy change: 25 basis points cut. Unexpected change: 23 basis points cut.

Growing caution by lenders and unsettled conditions in financial markets more generally are likely to be

restraining aggregate demand in the future.

• January 3, 2001. Policy change: 50 basis points cut. Unexpected change: 40 basis points cut. These

actions were taken in light of further weakening of sales and production, and in the context of lower

consumer confidence, tight conditions in some segments of financial markets, and high energy prices

sapping household and business purchasing power.

• April 18, 2001. Policy change: 50 basis points cut. Unexpected change: 43 basis points cut. Capital

investment has continued to soften and the persistent erosion in current and expected profitability, in

combination with rising uncertainty about the business outlook, seems poised to dampen capital spending

going forward. This potential restraint, together with the possible effects of earlier reductions in equity

wealth on consumption and the risk of slower growth abroad, threatens to keep the pace of economic

activity unacceptably weak.

One striking common feature that sets these episodes apart from the regularly scheduled meetings is that

the surprise component is nearly identical to the policy change. The reason is that, as these policy actions

were unscheduled, markets did not set up in advance of the policy rate decision. Consequently, the fed funds
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Figure A-1: Unexpected Changes to the Target Federal Funds Rate
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Note: Sample period: monthly data from 1990:M1 to 2012:M12. The bars depict unexpected movements in
the target federal funds rate. The red-dashed bars indicate intermeeting policy moves.

futures immediately prior to the announcements do not reflect market expectations about the policy change.32

Motivated by the anecdotal evidence presented above, we formally investigate whether the inclusion of

intermeeting policy moves in our shock series leads to endogeneity. To this end, we estimate a battery of

univariate regressions:

εMP
t = β0 +

T∑
i=1

βxi xt−i + νt,

where x is in turn the EBP , the monthly growth rate of IP, the stock market return, the nominal federal

funds rate, a measure of term spread, and a measure of real interest rate.33 We set εMP
t to either mRM

t ,

which denotes unexpected policy changes announced at regularly-scheduled FOMC meetings, or to mRM
t +mI

t ,

where mI
t denotes intermeeting policy moves. We choose T using the Akaike information criterion.

We report in Table A-1 the sum of coefficients expressed in basis points, as well as the F-statistic of the

null where each coefficient equals zero. According to the first row of Table A-1, mRM
t cannot be predicted by

any variable but the 2-year real interest rate. The addition of mI
t makes the proxy predictable by all variables

but the stock market returns. A high EBP predicts some of the unexpected cuts in the target rate, and a

strong economy predicts some of the unexpected increases in the target rate. These effects are consistent with

32van Dijk, Lumsdaine, and van der Wel (2014) provides supportive evidence for this thesis.
33The term spread is defined as the difference between the returns on a 10 year and 3 month U.S. Treasury bond.
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Table A-1: Predictability of Monetary Policy Shocks

Predictor EBP ∆IP LMRET FFR TS

mRM
t −0.31 0.30 0.00 −0.21 0.18

[0.18] [0.30] [0.99] [1.70] [1.72]

mRM
t +mI

t −2.75 1.83 −0.01 −0.46 0.87
[4.82∗∗∗] [5.12∗∗] [2.56∗] [5.73∗∗∗] [1.50]

Note: The dependent variable in each specification is εMP
t , a measure of monetary

policy shocks. εMP
t equals either mRM

t , which denotes unexpected policy changes
announced at regularly-scheduled FOMC meetings, or mRM

t +mI
t , where mI

t denotes
intermeeting policy moves. LMRET = value-weighted total stock market (log) return;
TS = 3m/10y term spread. For each regression we report the sum of coefficients∑T
i=1 β

x
i , where the lag length T is chosen using the Akaike information criterion. We

report in bracket the F-statistic of the null where each coefficient β equals zero. The
F-statistic is based on HAC standard errors. ∗ p < .10, ∗∗ p < .05, and ∗∗∗ p < .01.

the narrative from the FOMC Minutes and Statements reported above. Moreover, past values of the nominal

fed funds rate predict the proxy because all four moves were taken to accelerate an ongoing tightening (first

episode) or loosening (last three episodes) of the policy stance.34

While it is true that the Proxy SVAR is valid even when the proxy is correlated with previous nonmonetary

shocks, this kind of predictability, together with anecdotal evidence above, is suggestive of a more pernicious

contemporaneous correlation, which is not directly testable. Consistent with this evidence, we find that the

use of a proxy that includes both scheduled and unscheduled meetings in the estimation of the BP-SVAR (not

reported) induces a bias towards zero in the effects of monetary policy shocks on both credit spreads and real

activity. Moreover, Romer and Romer (2004) also exclude these unscheduled meetings in the construction of

their narrative-based shock series, as there is no corresponding Greenbook forecast with which to purge the

systematic component from these changes.

34Miranda-Agrippino (2015) provides a more detailed analysis on similary constructed proxies and also finds that the inclusion
of unscheduled policy decisions leads to predictability of the proxy.
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C Additional Figures and Tables

Figure A.2: Impulse Responses to a Monetary Policy Shock
(Selected Variables from the Gertler and Karadi (2015) VAR Model)
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Note: The solid line in each panel depicts the median impulse response of the specified variable to a 1 standard
deviation monetary policy shock identified in the Gertler and Karadi (2015) VAR model (left column) and in
the same model without the EBP (right column). Shaded bands denote the 90 percent pointwise credible sets.
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Figure A.3: Impulse Responses to a Monetary Policy Shock
(Selected Variables from the Gertler and Karadi (2015) VAR Model)
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Note: The solid line in each panel depicts the median impulse response of the specified variable to a 1 standard
deviation monetary policy shock identified in the Gertler and Karadi (2015) VAR model (left column) and
in the same model without the EBP (right column). The response of prices has been accumulated. Shaded
bands denote the 90 percent pointwise credible sets.
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Figure A.4: Forecast Error Variance Decomposition of Monetary Policy Shocks
(Selected Variables from the Gertler and Karadi (2015) VAR Model)
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Note: The solid line in each panel depicts the median estimate of the portion of the forecast error variance
of a specified variable attributable to a 1 standard deviation monetary policy shock identified in the Gertler
and Karadi (2015) VAR model (left column) and in the same model without the EBP (right column). Shaded
bands denote the 90 percent pointwise credible sets.
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Figure A.5: Forecast Error Variance Decomposition of Monetary Policy Shocks
(Gertler and Karadi (2015) VAR Model)
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Note: The solid line in each panel depicts the median estimate of the portion of the forecast error variance
of a specified variable attributable to a 1 standard deviation monetary policy shock identified in the Gertler
and Karadi (2015) VAR model (left column) and in the same model without the EBP (right column). The
forecast error variance decomposition of prices is based on the level of the variable. Shaded bands denote the
90 percent pointwise credible sets.
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Figure A.6: Impulse Responses to a Monetary Policy Shock
(Selected Variables from the Gilchrist-Zakrajšek VAR Model)
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Note: The solid line in each panel depicts the median impulse response of the specified variable to a 1 standard
deviation monetary policy shock identified in the Gilchrist-Zakraǰsek VAR model (left column), in the same
model without the EBP (center column), and without both the EBP and the excess stock market return.
The responses of consumption, employment and prices have been accumulated. Shaded bands denote the 90
percent pointwise credible sets.
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Figure A.7: Impulse Responses to a Monetary Policy Shock
(Selected Variables from the Gilchrist-Zakrajšek VAR Model)

-0.5

-0.3

-0.1

 0.1

 0.3

 0.5
 

     

 0 12 24 36 48
-0.5

-0.3

-0.1

 0.1

 0.3

 0.5

Percentage Points

10-year Treasury Yield

 

     

-0.5

-0.3

-0.1

 0.1

 0.3

 0.5
 

     

 0 12 24 36 48
-0.5

-0.3

-0.1

 0.1

 0.3

 0.5

Percentage Points

10-year Treasury Yield

 

     

-0.5

-0.3

-0.1

 0.1

 0.3

 0.5
 

     

 0 12 24 36 48
-0.5

-0.3

-0.1

 0.1

 0.3

 0.5

Percentage Points

10-year Treasury Yield

 

     

-8

-6

-4

-2

 0

 2
 

     

 0 12 24 36 48
-8

-6

-4

-2

 0

 2

Percentage Points

Cum. Excess Market Returns

 

     

-8

-6

-4

-2

 0

 2
 

     

 0 12 24 36 48
-8

-6

-4

-2

 0

 2

Percentage Points

Cum. Excess Market Returns

 

     

-0.1

 0.0

 0.1

 0.2
 

 0 12 24 36 48
-0.1

 0.0

 0.1

 0.2

Percentage Points

Excess Bond Premium

 

Note: The solid line in each panel depicts the median impulse response of the specified variable to a 1 standard
deviation monetary policy shock identified in the Gilchrist-Zakraǰsek VAR model (left column), in the same
model without the EBP (center column), and without both the EBP and the excess stock market return. The
responses of the excess market return has been accumulated. Shaded bands denote the 90 percent pointwise
credible sets.
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Figure A.8: Forecast Error Variance Decomposition of Monetary Policy Shocks
(Selected Variables from the Gilchrist-Zakrajšek VAR Model)
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Note: The solid line in each panel depicts the median estimate of the portion of the forecast error variance of
a specified variable attributable to a one standard deviation monetary policy shock identified in the Gilchrist-
Zakraǰsek VAR model (left column), in the same model without the EBP (center column), and without both
the EBP and the excess stock market return. The forecast error variance decomposition of consumption,
employment, and prices is based on the level of the variable. Shaded bands denote the 90 percent pointwise
credible sets.
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Figure A.9: Forecast Error Variance Decomposition of Monetary Policy Shocks
(Selected Variables from the Gilchrist-Zakrajšek VAR Model)
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Note: The solid line in each panel depicts the median estimate of the portion of the forecast error variance of
a specified variable attributable to a one standard deviation monetary policy shock identified in the Gilchrist-
Zakraǰsek VAR model (left column), in the same model without the EBP (center column), and without both
the EBP and the excess stock market return. The forecast error variance decomposition of the excess market
return is based on the level of the variable. Shaded bands denote the 90 percent pointwise credible sets.
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